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A large number of works (see [l and 21, for example, where there are also references to 

other works) has been devoted to the description of a medium with microstructure within 
the framework of couple-stress elasticity theory. In [3 to 61 a theory has been developed, 

on the basis of crystal lattice theory, for a macroscopically homogeneous elastic medium 
with spatial dispersion which contains couple-stress elasticity theory as a particular case 

of weak dispersion. The general case of an inhomogeneous elastic medium with nonlocal 
interaction has been considered in [7]. 

A theory of internal stresses in a medium with microstructure, which is an extension 
of the continuum theory of dislocations, is considered herein. As is known, this latter has 
been constructed on the basis of a model of the elastic continuum and does not take 

account of the discrete structure of the medium, and in this sense, is an asymptotic the- 

ory of the interaction between defects at great distances. Taking account of the micro- 
structure allows an essential broadening of the range of applicability of the theory and 

brings it closer to the theory of defects in a crystal lattice; The importance of such a 
generalization was mentioned in 163, in particular. The connection between dislocation 

theory and couple-stress elasticity theory of a Cosserat continuum has been considered 
in 111 to IS], and the motion of dislocations in a medium with spatial dispersion, in [17 
and 181. 

Section 1 herein is devoted to a general analysis of the statics of internal stresses in 

a medium with microstructure. The state of the medium is described by internal and 
external distortions, where the former is governed by the condition of orthogonality, with 
respect to the energy, of the external distortion tensor. The structure of the operator of 
the elastic moduli of the internal stresses is analyzed. It is shown that it generally dif- 

fers from the operator of the elastic moduli of the external stresses by some operator 
which is localized in a domain where internal stress sources are concentrated. In this, 
and only in this domain may the internal stresses, in contrast to the external stresses, be 
nonsymmetric. The difference between the elastic moduli operators vanishes in the con- 

tinuum approximation, and the stress tensor is symmetric everywhere. The Greer’s tensor 
for the internal stresses is determined, and its connection irith the Green’s tensor for the 
external stresses is established. Expressions are written down for the elastic energy and 
the stress fields of dislocations and of point defects in terms of the Green’s tensor. 

An explicit expression for the Green’s tensor of internal stresses in an isotropic medium 
with spatial dispersion is constructed in Section 2. The asymptotic behavior of the Green’s 

tensor is analyzed, and in particular, the contribution to the asymptotic from the nonlin- 
ear dependence of the dispersion curve on the wave vector is determined. 

1. In constructing a theory of internal stresses in a medium with microstructure it is 

898 



Internal stresses in rnedk wirh microstructure* 899 

desirable, insofar as possible, to retain the general scheme and terminology of the con- 

tinuum theory of dislocations, The basic difference between the model of an elastic 

medium with microstructure and the customary elastic continuum is the presence of a 
unit length element and of long-range forces, which results in the nonlocal character of 

the theory. This is reflected twofold in an appropriate formalism. Firstly, the field vari- 
ables belong to a special class of entire analytic functions with a truncated Fourier spec- 
trum p]. Secondly, the elastic moduli are replaced by integral operators, where the ker- 

nels are not difference operators for a macroscopically ~homogeneo~ medium. 
We shall assume that the state of stress of the medium is caused in the general case 

by both the effect of externai forces, and the presence of internal stress sources. These 

sources may be,for instance,foreign atoms and vacancies, dislocations, grain boundaries, 
etc. In this case the variable field uniquely defining the state of the medium may natu- 
rally be considered an elastic distortion ~~3, just as this is done in the continuum theory 

of dislocations [8]. The internal degrees of freedom (microrotations and microstrains) 

hence do not enter into the considerations explicitly. This is based on the fact that, as 
shown in [4 and 51, in the acoustic frequency domain, and therefore in the statics case 

also, the complex structure equations can be transformed into an equivalent simple struc- 
ture by eliminating the internal degrees of freedom. Limiting ourselves to the harmonic 
approximation case, we write the most general expression for the elastic energy @ of an 

infinite medium with microstructure as 

2tI,= * 
Is 

XaB (I) SM+ (x, r’) x G (2’) dxdx’ = 

x=8 (k) SaPAp (k, k’) xhp (k’) dkdk 

Here x is a point of the medium, Xlli (k) is the Fourier transform of X.p (x). From the 

assumption on the existence of a unit length element a in X-space, there follows that 
the base xag(k) is contained in some bounded domain of k-space with a characteristic 

dimension bn tne order of a”. The tensor saahp(z, z’) is the kernel of the energy oper- 

ator , and SQPhp (k,k’) is its Fourier transform with respect to x and its Fourier original 

with respect to X’. Finally, the bar denotes the complex conjugate. 
We shall henceforth write expressions of type (1.1) in the compact form 

20 = Q&p 1 SUBhP I XQ> (1.2) 

The operator s is obviously Hermitian, i.e., 

l.w~ (CT, 2’) = sQ-2 12’. x), s%QQ (k, k’) = Sx’@ (k’, k) (1.3) 

and it is also natural to consider it positive-definite. 
From the requirement of invariance of the energy relative to rigid rotation of the 

medium we find just as in [3 and 71 

<“=@ I s”c*iLI Xx$ = 0 fi.4 

for an arbitrary constant (in X-space) antisymmetric tensor X+ Hence, the condition 

on S(k.k') SWb (0, k’) = 0 (f.5) 
follows from the arbitrariness of Xap 

The energy operator S defines the scalar product in the function space by transforming 
it into a Hilbert space. This latter may be decomposed into an orthogonal sum of exter- 
nal and internal distortion spaces, and the total energy is then represented as the sum of 
external and internal energies. 
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The external distortion &ii ’ is defined as the gradient of a displacement ua caused 
by the external forces C+’ (r) dctUi (J.). fot~-y,3~ (Z) = 0 (1 .q 

We shall henceforth assume that the medium is macroscopically homogeneous at infi- 
nity. In this case, as has been shown in p], the most general expression for the external 
energy may be written as follows: 

31) = (&’ .j s+- j r;,.,‘: = {Ea3’ 1 cx*Bhl* I Ekir’> (1.7) 

Here sap’ = 5f,~l ’ is the strain tensor, and the Hermitian operator CaBhp is symmet- 
ric in the superscripts a@ and kp , and may be represented by virtue of the assumption 

made as CJr’hP tx, 2’) _ (yOaSkL (s _ x’) _,_ cpF~.)L (“, r’) (1.8) 

where &(x,x ‘) = 0 for both x-co and x’-+m. For the external stresses uSag we have 

Here the first relationship is the operator Hoolre’s law, and the second is the equilib- 
rium equation whose right side contains the density of the volume forces q@ (2). 

The system of Eqs. (1.6), (1.9) and the conditions for the positive operator cat infi- 
nity define U, 5 ’ and 0’ uniquely. In other words. there exists a Green’s tensor G in 

terms of which the displacements are written thus 

u, (z) -1 
s 

G,$ (z, s’) qp (z’) dz’ (2.10) 

Representing the total distortion x in the form X = 6’+ 6 , where 5 is the internal dis- 
tortion, we require, by assumption, compliance with the orthogonality condition 

‘t;,p’ I sJ@p I 5+> = 0 (l.li) 

We then have for the internal energy 

2ar = C&g I PfiAP 1 c+> (1.12) 

The quantity 
(1.13) 

evidently has the sense of an internal stress tensor. It follows from (1.11) that 0 satisfies 

the Eq. aae (5) = 0 (1.14) 

The right-hand side of Eq. 
rotvabA, (2) = ayP (r) (l.i5) 

characterizes the density of internal stress sources. If dislocations are a physical internal 

stress source. then by definition a may be identified with the dislocation dens&y, and in 
the general case, with the quasi-dislocation density in the Krker terminology f8J. It is 
henceforth assumed that the internal stress sources are concentrated in a bounded domain 
of the space. 

Eqs. (1.13) to (1.15) form a complete system of equations defining 6 and o for a 
given dislocation density Cr. . 

Let us examine the structure of the operator s by assuming that the long-range is of 
the order of the unit length element a , Let us represent s as 

s&P =I Cz?n.P + T%.:&& (i.i6) 

From physical considerations it follows that the Hermitian operator r should be loca- 
lized, for a bounded long-range effect, in a domain where there are internal stress sources. 
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Hence, r should satisfy conditions resulting from (1.7) and (1.5) 

a,a&YBXp (z, Cc’) = 0, 7Wl IF (9, k’) = 0 (1.17) 

It hence follows that the decomposition of the entire analytic function r( k. k') in 
a series in k , k' starts with such a term 

‘@A& (k, k’) = @~“k, +_ +=s”kV~ + . . . (1.18) 

where tafiXpv is a constant tensor antisymmetric in the superscriptsav and symmetric in 
XI.1 l In an isotropic medium and in the presence of central symme~ the decomposition 
of ir( k , k’) starts with a second order term in k , k'. 

If a -+ 0 , i, e. the passage of the model of the customary elastic continuum is accom- 
plished, then T’-, 0 and 3 coincides with c. In this case the internal stress tensor is 
symmetric. In the general case r# 0 , and the stress tensor is generally nonsymmetric 
but only in the domain where the internal stress sources are concentrated, For simplicity 
it is henceforth assumed that s = c . The r# 0 case may be considered analogously, 
but is associated with additional complications. 

As is customary in continuum dislocation theory [8 and 101. it is convenient to intro- 
duce two other characteristics of the internal stress sources besides the dislocation den- 
sity C&(x) : the incompatibility ?J (x ) and the density of the dislocation moments m(x) 
by defining them thus qVp (P) = rot@ I p lcz~~ (5), ayp (cc) = r~t’~~~~ (2) (1.29) 

Let us note that the density of the dislocation moments Vl (x) is not defined uniquely 
DO]. Its base is generally broader than the base a(X) and contains the latter as a subset. 
Thus the base C&(x) is a line of dislocations for a closed dislocation loop, and the base 
m(X) is an arbitrary surface resting on the line of dislocations (*). It is evident from 
physical considerations that the base a(x) or ‘Q(x) should be considered the true do- 
main of concentration of the internal stress sources. The base a(X) and m (x) coincide 
in the case of point effects, But in all cases the base, being given in an appropriate class 
of functions, turn out to be “smoothed out” by a quantity on the order of the unit length 
element a . 

According to (1.19) the connection between lj (x) and m (x) is given by 

n” (2) = RotVPkI* rnhlr (2) (1.20) 

where the operator Rot is defined by the expression (“) 

Rot”QhP zz (PQWa,a,) (Q&J (1.21) 

Let us write the solution of the system (1.13) to (1.15) as 

6@ (x) = 1 Pa@ (r, z’) rn& (2’) dx’ (i-22) 

where ppaP (r, I‘) is the Green’s tensor for the internal stresses having the symmetry 
cae+ (5, Cc’). 

Substitution of (1.22) into (1.13) to (1.15) yields an equation for F which in direct 
operator notation is Rot C-IF = Rot (1.23) 

‘) If a line current is compared to the dislocations in a magnetostatic analogy, then the 
density of the magnetic moments correspond to the density of the dislocation moments. 
“) For convenience in the writing, the symmetrissaticm operation is here included, in the 
definition of Rot (see [8 and 101 also). 
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Applying the operator div to the right and taking into account that F is Hermitian, 

we find that divF= 0 . Hence, there follows representability of F as 

F = Rot H Rot (1.24) 

where the operator fl has the symmetry F, and is evidently not defined uniquely. It is 
expedient to utilize this nonuniqueness to obtain the simplest expression for H. 

The internal elastic energy 
2tD = 

s 
cap (2) egg (z) dx (1.25) 

may now be written in the following three forms: 

GUI = (ml F Im) = (a I rot H rot1 CI 1 = <tl I HI q) (1.26) 

The convenience of selecting any of the forms is hence governed by the specific form 

of the internal stress sources. 
For example, let the point defect distribution 

JU+ (2) = v 2 MX; 6 (x - xi) (1.27) 
1 

be given, where U = a3 and M’ is the nondimensional defect moment. In this case it is 

convenient to use F as the Green’s tensor. We find directly 

au’ (5) = v ~ M~tF”“~ (z, pi) . 2(D= v’~ M~Mh~FaBn’ (“i, 9) (1.28) 
i ii 

The density Cl01 a?,, (r) = b,ij (L”) (1.29) 

corresponds to a dislocation with contour L and Burger’s vector biL . 
We have for the stresses and energy ( rot’ acts on the argument Y) 

ca9 (x) = b, RotapTP 5 rot+‘)rHTPVh (x, zr,‘) dL” 

r, 

2cD = bgb, rotaP rot’KAH+pVA (x1>, xi) dL’dL’* 

L I.’ 

(1.30) 

It is interesting to establish a connection between the Green’s tensors for the internal 

and external stresses. The method of equivalent force dipoles [lo] may be used for this 

by comparing the density of the force dipole moments mA, 
4 

to the density of the dislo- 
cation moments q 

(I” (J) = - 5 Caahp (z, z’) mAp (2’) dx’ (1.31) 

Omitting calculations analogous to those presented in [lo], let us write the final result 

in operator form ,@&I* _ C&p + Car% VVCpsVxCZXAP (1.32) 

Therefore, F may be constructed if G is known, However, it will be shown below that 

in a number of cases it is more convenient to obtain explicit expressions for F andfl by 
a direct method. 

2. Let us consider a macroscopically homogeneous isotropic medium with spatial dis- 
persion. In this case C (x, z’) = C (I - x’) and in the k-representation 

CaQAP (k, k’) = c Qht (k) 6 (k -k’) (2.1) 

Here C(k) is the Fourier transform of C(X) . For any isotropic medium 

C (k) = 2~ (k) E + h (k) I (2.2) 

,+A* = I/* (&j%’ _+ 8”“6”h) IaPAp = &=$jhp (2.3) 
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where A(k) , Cl(k) are given functions of k = 1 ka 1 , in which k may be considered 

a bounded sphere with Debye radius K = ll /a . 

The tensor B (k) inverse to c(k) is 
1 

B(k) = m E - 
1 (k) 

2P (k) [3h(k)-t 2cL (VI I 
(2.4) 

In this case the difference kernel F(x -x’) , or in the k-representation, the kernel 
F (k, k’) = F (k) 6 (k - k’) corresponds to the Green’s operator P. Writing (1.24) in 
the k-representation, and replacing c-l by B(,k) we obtain Eq. for F(k) 

RcrBvp (k) Bvpxs (k) I+‘hp (k) = RaPAlL (k) (2.5) 

where R(k) is the Fourier transtorm of the operator Rot 

RapA* (k) = - (Ph+‘kpkJ olilj p.q 

Rather cumbersome computations allow a representation of the solution of (2.5) as 

the following : 
Faphp (k) = RaflVp (k) Hvpxs (k) Rxshp (k) (2.7) 

u(k) 
H(k) = 2 7 [ E+ k(k)‘$)P(k) I] (2.8) 

To pass to the X-representation in (2.7) it is necessary to give explicit expressions for 
p(k) and X(k) . The functional dependence on k of the longitudinalUA and transverse 
Wt free vibrations frequencies of the medium connected with x , )1 and the density p 

by means of the known relationships 

.p~? tk) = ka [A (k) + 2cl (k)l. pot2 (k) = k2p (k) (2.9) 

has a more graphic physical meaning. 
From general considerations it follows that 

doi (0) dai (x) - = si, 
dk dk=O (2.13, 

where si is the speed of sound for k = 0 , t = a , $ . Different model approximations 
are know for the functions Wi (k). Thus, it is assumed in the Born-Karman model that 
the W,(k) have the same dependence on k as in linear circuit theory, and in the Debye 
model the UJi are considered linear functions of k , which is equivalent to the assump- 

tion x (k)=X, , p(k)=&, , where io , &, are the usual Lamk constants. In the lat- 

ter case the second of conditions (2.10) is certainly not satisfied. The simplest 
B 

olyno- 
mial approximation with one orbitrary parameter yi is henceforth taken for Wi (k) : 

q2 (k) = si2k2 [ 1 - yix-2k2 + ‘/s (2~~ - 1) Ok41 (2.li) 

which satisfies conditions (2.10). The parameter yi is connected uniquely with the 
boundary value of the frequency UJ, (K) 

& (x) 2 - Yii 
si2”“= s (2.12) 

Let us note that (2.11) practically corresponds to the Born-Karman model for yl = 0.8. 
If the natural assumption ,is made that the boundary frequency is less than the Debye 

frequency, then the condition -lcyi<2 isimposedonyi. 
Finally, let us assume that yl = 7t = y. This is equivalent to the assumption of inde- 

pendence of the Poisson coefficient v from k . Then comparison of (2.11) with (2.9) 
yields P (k) = cl,, [I - yr2ka + l/g (2~ - 1) x-“P] (2.13) 

and (2.8) becomes 
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K(k)=Zk-$(k)(E+ -&I) (2.14) 

To obtain H(X) it is required to find the inverse Fourier transform for the function 

h(k) = k’l_l( k) under the condition ks H. . Calculations yield 

h (p) = P (A) f (r), r= 1x1 (2.15) 

j (r) = - y&q- (xr Si xr + * -j- cos xr 
1 

(2.16) 

p (A) = p,, Ii + y+A + l/a (2~ - 1) x-‘Aa] (2.17) 

For the Debye model p(A) = p. . Let us also note Formulas 

g(r) = AI (r) = - & Si xr (2.18) 

% ( sin xr 
* k) = A? (r) = m I --ccosxr xr 1 

(2.19) 

where 6(x) plays the part of a three-dimensional 6 -function, and g( 7) is the Green’s 
function of the Laplace operator in the space of functions with a Fourier spectrum trun- 

cated by the Debye radius H. 
We now have for H(X) 

If (2) = 2 (E + -$&I) h (r) (2.24Y 

Substitution into (1.24) yields an explicite expression for F(x) , This latter may also 

be transformed into 2v 
F(+)=_RotRot~(A)f(r)+-i_~Rot~~(A)g(r) (2.21) 

It is important to emphasize that the Green’s tensors F and fl are entire analytic 

functions, and therefore, have no singularities at x = 0 . This permits writing expressions 

for F and H as well convergent series. From (2.15)to (2.17) we have for )t( 7) 

h (r’ = -+&- $jO (- V 12 (zn-l) ;;;2;:)3)(;--;1)1f) (2n + 7)1 tXr)2n (2.22) 

Using the expansion for .?7, (r) , it is easy to find the value of F(X) at x = 0 , in par- 
ticular, in terms of which the intrinsic energy of a point defect 

PfixS 
F”)) = 45n” (1 - v) I(7 - 5v) E + (1 + 5v) 11 (2.23) 

is expressed according to (1,. 28), where B - 1 depends on the form of the function W (k) 

and is determined, ultimately, by the coefficient of p in the expansion of h,( 7) . We 
have for the Debye model and the approximation (2.11). respectively, 

B= 1, 
30 - llr 

P= 35 (2.24) 

Of special interest is the asymptotic behavior of the Green’s tensor for large r , or 
equivalently. for a * 0 . It is easy to show that only the first two members in the expan- 
sions in (2.11) or (2.13) yield any contribution to the asymptotic values. Higher order 
terms yield rapidly damped oscillations with period on the order of a and should be 
discarded in the asymptotic expansion. The asymptotic value of F is defined by the 
asymptotic value of h(r) . The latter is 

h(r)=: --~(I+&) (2.25) 

Substitution into (1.24) yields for F 
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where ,J‘i , & are nondimensional tensor functions of the unit vector na &= I’ I r and 

the Poisson coefficient v . The second member in (2.26) is missing from the Debye 

model and the asymptotic agrees with the Green’s tensor for an elastic continuum. In 
the general case the second member in (2.26) takes account of the deviation in UJ (k) 
from a linear law, and includes information on the presence of microstructure in the 

medium. 
In conclusion, let us consider a point defect of pure dilatation type with the moment 

density m,s (5) = v M a,, 8 (3) (2.27) 

as a simple illustration, where M is the relative change in volume of the point defect. 

Then, according to (1.28) taking account of (2.21) and (2.23). we find for the stress and 

energy of the defect 
CPQ (2) = - 

2(1+v)vM 
l-v rot”’ rot& (A) g(r) 

@ = Iis npvp,,M2 - vyoM2 

As r-‘” the known solution for a center of dilatation results from (2.28). 
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CONTACT PROBLEMS OF CREEP THEORY 
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The development of creep theory, particularly the proof of the theorem on the influence 

of creep on the state of stress and strain of an isotropic solid p and 261 arid the solution 

YZ of the plane contact problem of plasticity theory [S] 

fW 
produced hypotheses for the analysis of contact prob- 

,, lems of creep theory taking account of material age- 
ing. The new effective method of solving first and 
second kind Fredholm integral equations [18 and 191, 

which permits obtaining solutions if the solution of 
* 5 the corresponding equation with unit right side is 

known, also played an essential part. Let us note that 
from the mechanics viewpoint this solution corre- 
sponds to the solution of the plane contact problem 
for the case of pressure of a rigid stamp with a recti- 

Fig. 1 linear base on a half-plane. 

1. P1bn0 Contact problam of creep theory, Prokopovich BS] first 
studied the plane contact problem of linear creep theory. The known solution of elastr- 
sity theory [38] and the fundamental equations l?!] of hereditary theory of ageing per- 
mitted him to obtain the following Formula : 


